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On the stability of liquid ridges
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We consider the stability of a rectilinear liquid region whose boundary is composed
of a solid cylindrical substrate of arbitrary shape and a free surface whose cross-
section, in the absence of gravity, is a circular arc. The liquid–solid contact angle is
a prescribed material property. A variational technique, using an energy functional,
is developed that predicts the minimum wavelength for transverse instability under
the action of capillarity. Conversely, certain configurations are absolutely stable and
a simple stability criterion is derived. Stability is guaranteed if, for given substrate
geometry and given contact angle, the unperturbed meniscus pressure is an increasing
function of the liquid cross-sectional area. The analysis is applied to a variety of
liquid/substrate configurations including (i) a liquid ridge with contact lines pinned
to the sharp edges of a slot or groove, (ii) liquid ridges with free contact lines on
flat and wedge-shaped substrates as well as substrates of circular or elliptical cross-
section. Results are consistent with special cases previously treated including those
that employ a slope-small-slope approximation.

1. Introduction
The problem of determining the shape and stability of capillary surfaces has a long

and rich history. Capillary surfaces are of interest mathematically as surfaces of pre-
scribed mean curvature, but more importantly because they appear in many natural
and technological processes. The study of static capillary surfaces has applications in
a wide variety of fields: in two-phase porous media flow (oil recovery), in the coat-
ing technologies, in integrated circuit technology, in respiratory mechanics (airways
closure), etc. Microgravity environments have led to renewed interest in applications
where the distribution of liquids is strongly affected by capillary forces: growth of
crystals in liquid zones, other materials processing, design of spacecraft tanks which
guarantee fuel outflow, etc. For excellent reviews of the historical development of
capillary mechanics, or of the mathematical and physical background of interfacial
surfaces, drops and bubbles, see Padday (1969), Princen (1969) and more recently
Michael (1981). Significant progress has been made for the pendant and sessile drops
maintained in equilibrium by a combination of surface tension and gravitational
forces. See Padday & Pitt (1973), Concus & Finn (1979, 1990), Finn (1986).

It is well-known since the work of Plateau and Rayleigh that free liquid cylinders
of circular cross-section are subject to capillary axial instabilities if the cylinder length
exceeds its circumference. The same instability criterion applies to cylindrical liquid
columns supported by coaxial circular disks, or for thin liquid linings of the interior or
exterior of a cylindrical tube. Similar axial instabilities are known for other cylindrical
liquid configurations, such as liquid ‘fillets’ pinned to a slot (Majumbar & Michael
1976; Brown & Scriven 1980), or static rivulets with free contact lines which partially
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wet a flat substrate (Davis 1980), or the sidewalls of an edge or a wedge (Langbein
1990).

Here, we analyse the stability of cylindrical liquid ridges which partially wet an
arbitrarily curved cylindrical substrate with a prescribed constant static contact angle.
We assume that the equilibrium is achieved purely by a balance of interfacial forces
at all solid–liquid, solid–vapour and liquid–vapour interfaces. Hence we neglect the
influence of all body forces, so that the cross-section of the unperturbed equilibrium
capillary surface is an arc of a circle. Our goal is to determine the conditions
satisfied between the curvatures of the solid and liquid surfaces and the contact angle
which guarantee stability of the cylindrical meniscus, and to predict, for unstable
configurations, the critical wavelength for which all transverse disturbances of larger
wavelength are destabilizing. If a cylindrical meniscus is unstable, it may break into
separate droplets, and dewet some portion of the substrate.

The equilibrium conditions and stability properties of a capillary surface can be ob-
tained by consideration of the difference in interfacial energies between the perturbed
and unperturbed configurations. A general class of infinitesimal smooth perturbations
is obtained by displacing each point of the unperturbed surface by a distance η(s, z)
along the surface normal direction, where s is the arclength measured along a cross-
section, and z is measured along the axis of the cylindrical liquid surface. By letting the
first variation of the energy to be zero for all small infinitesimal, volume-conserving
perturbations, one obtains the classical Laplace and Young–Laplace equations gov-
erning the shape of a capillary surface bounding a specified liquid volume. Assuming
these equations to hold, stability can then be guaranteed if the second-order energy
variation remains positive for all volume-conserving perturbations. The problem then
amounts to finding the minimal value reached by a quadratic functional Q(η) on the
set of smooth shape deformations η satisfying a volume constraint. The correspond-
ing variational problem is known to be equivalent to the solution of an eigenvalue
problem. This analysis shows that two possible modes of instability can occur: planar
modes, i.e. independent of the z-coordinate, and transverse modes exhibiting sinuous
variations along the z-direction.

Of most interest is to find the critical wavelength above which all sinuous transverse
modes are destabilizing. The occurence of a critical wavelength corresponds to a
neutrally stable transverse mode which leaves the system energy unchanged. We derive
a stability criterion by determining under which conditions no critical wavelength can
be found, that is, the conditions for which all transverse disturbances lead to an
increase of the energy of the system. We find that stability is guaranteed if, for given
substrate geometry and given contact angle, the unperturbed meniscus pressure is an
increasing function of the liquid cross-sectional area.

The mathematical technique used here has been employed by others, for example
Concus & Karasalo (1978), Karasalo (1979), Brown and Scriven (1980), Myshkis
et al. (1987), and Sekimoto, Oguma & Kawazaki (1987). Another more prevalent
technique in meniscus stability analysis is bifurcation theory: change in stability occurs
whenever alternative bifurcating equilibrium solutions are present. The occurrence of
a neutrally stable mode of perturbation corresponds to the joining of two or more
branches of equilibrium solutions, here the branches of cylindrical interfaces and
of three-dimensional wavy interfaces. We do not calculate here the new equilibrium
interfaces which bifurcate from the cylindrical interfaces, as Brown & Scriven did for
liquid menisci pinned to a slot.

Stability studies of cylindrical capillary surfaces can be found in the literature.
Majumbar & Michael (1976) have examined the stability of two-dimensional pendant
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drops formed in a channel of prescribed aperture, hanging from horizontal parallel
edges at the same height. Hence the contact lines of the drop are pinned at two corner
points, and the equilibrium is maintained by a balance of gravitational and surface
tension forces. They examined the stability of the drop to both planar symmetric
modes and to three-dimensional displacements having sinuous variation along the
length of the drop. For apertures less than a critical value π times the capillary length√
σ/ρg (where σ is the interfacial tension, ρ the liquid density and g the acceleration

due to gravity), the drop pressure, as measured by the internal pressure at the aperture
in excess of the external pressure, reaches a maximum as the volume and depth of
the drop are gradually increased from zero. For drops maintained at constant volume
within apertures less than π, they showed that instability will develop due to three-
dimensional perturbations, whenever the two-dimensional equilibrium profile reaches
a pressure maximum. Instability due to two-dimensional plane, symmetric, volume-
conserving disturbances occurs when the volume of the suspended drop reaches a
maximum value as a function of its depth. Since the pressure maximum occurs at a
lower volume and a lower depth than the point of volume maximum, the drop will
always become unstable to three-dimensional disturbances first. The limiting case of
zero Bond number was analysed by Brown & Scriven (1980), and similar qualitative
results were found.

Davis (1980) studied the stability of static rivulets partially wetting a flat surface,
of height so small that gravitational effects are neglected. Here the contact lines
of the equilibrium cylindrical liquid interface are allowed to move. Stability of the
static meniscus is studied by a dynamic approach by linearization of the hydrodynamic
equations which govern the small-amplitude disturbances of the rivulet. Three types of
contact line conditions are considered: (i) fixed contact lines, (ii) moving contact lines
with fixed contact angles, and (iii) contact angles which vary smoothly with contact-
line speeds. The linearized equations of motion of each normal mode exp (ωt+ irkz)
(where z is the coordinate along the axis of the cylindrical ridge of radius r) yield
a energy balance equation of the form Eω2 + Φω + I(k) = 0 where E is the kinetic
energy of small disturbances, Φ is the viscous dissipation, and I is the interfacial
energy due to surface tension. A sufficient condition for stability is obtained in the
form I(k) > 0 in all cases. In particular, for both cases (ii) and (iii) of contact line
motion, the same stability condition is obtained by deriving a lower bound for I(k).
Setting this lower bound to zero yields an expression for the critical wavenumber kc:
all normal modes of wavenumber 0 < k < kc are unstable. We will show that the
necessary condition for stability found by Davis is a particular case of our results.

Our study is organized as follows: in § 2, we determine the first- and second-order
variations of the system interfacial energy, and we obtain the equations governing
the equilibrium capillary surface and the condition for stability as the positivity of
a quadratic functional Q(η); in § 3, we arrive at a stability criterion and the critical
wavelength of instability by showing that the variational problem minQ > 0 is
equivalent to an eigenvalue problem governing the modes of instability; in § 4, we
apply our stability analysis to a number of substrate configurations where we recover
previously known results and show new results; finally, in § 5, we conclude with a few
remarks and with possible generalizations.

2. First- and second-order variation of the energy
We consider whether equilibrium capillary surfaces which partially wet a solid

substrate are stable to transverse perturbations. We neglect the influence of gravity,
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Figure 1. Cross-section of cylindrical liquid ridge through a plane z = constant.

since the Bond number Bo = ρgL2/σ is assumed small compared to unity. The liquid
interface is surrounded by a passive gas of constant atmospheric pressure which may
be taken to be zero without loss of generality. The unperturbed liquid configuration
and the substrate shape are independent of the coordinate z of a Cartesian coordinate
system (Oxyz). See figure 1. We assume that both surfaces are infinite cylinders with
generatrices parallel to the z-axis. The unperturbed liquid–vapour interface S may
be described by the equations

x = X(s), y = Y (s), s0 6 s 6 s1, (2.1)

where s is the arclength measured along the curve of intersection C between the
liquid-vapour interface and any plane z= constant. The unperturbed contact lines
are the straight lines s = s0 and s = s1 where the three interfaces solid–vapour,
solid–liquid and liquid–vapour intersect. We assume that the liquid is to the right
of C as one moves on C in the direction of increasing s. Then the mean curvature
(defined herein as the sum of the principal curvatures) of the interface is given by

κ(s) = X ′(s)Y ′′(s)− Y ′(s)X ′′(s), (2.2)

where primes denote derivatives with respect to the variable s. We consider the class
of infinitesimal, smooth perturbations formed by displacing each point (s, z) of S a
small distance η(s, z) in the direction of the outward normal n at that point. Hence
we obtain the following representation:

x = X(s)− η(s, z)Y ′(s), y = Y (s) + η(s, z)X ′(s), z = z, (2.3)

where s0 + δs0 6 s 6 s1 + δs1. The cylindrical solid interface may be parametrized by
the arclength s in the following way

x = X(s)− w(s)Y ′(s), y = Y (s) + w(s)X ′(s), (2.4)

over a neighbourhood of the unperturbed contact lines s = s0 and s = s1, and where
w(s) represent the coordinate of a point of the wall measured on the normal n at
a point of C. See figure 1. Since normals to the liquid free surface may intersect,
representation (2.4) is only valid over sufficiently small sections of substrate. This
representation is in fact only needed in a small neighbourhood of the contact lines.
See additional remarks in Appendix A. The intersection of the solid and liquid
interfaces at the contact lines imposes the condition

w(si) = 0 (2.5)
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for the unperturbed state, and

δsi(z) =
η(si, z)

w′(si)
(2.6)

for the perturbed state, within first-order of perturbation δsi and η(si).
The liquid interface is in equilibrium if the total energy E = σALV + σSVASV +

σSLASL associated with the surface forces acting at all interfaces reaches a stationary
value. Here ALV , ASV and ASL are the areas of the liquid-vapour, solid-vapour,
and solid-liquid interfaces, respectively, with corresponding surface energies σ, σSV ,
and σSL. This can be expressed by stating that the variation δE of the system’s
energy is zero for all infinitesimal perturbations η which leave the volume V of the
liquid domain unchanged. We note at this point that this variational isoperimetric
problem should be solved more rigorously by using a two-parameter family ε1η1 +ε2η2

of comparison functions (perturbations) in order to properly guarantee the volume
constraint. We show in Appendix B that a one-parameter family is in fact sufficient.

Our constrained optimization problem can be written as the variation

δE(η) + µδV (η) = σδALV + (σSL − σSV )δASL + µ δV = 0, (2.7)

where µ is a Lagrange multiplier, and where we have used δASV = −δASL for the
variation of area of the solid-vapour interface. With the adopted parametrization,
and over a length λ along the z-axis, we find (see Appendix A for details)

δE(η) + µδV (η) =

∫ λ

0

∫ s1+δs1

s0+δs0

{σfA(η, ηs, ηz)− σ + µfV (η)} ds dz

+

∫ λ

0

∫ s0

s0+δs0

{σ + (σSL − σSV ) fA(w, w′, 0)− µfV (w)} ds dz

+

∫ λ

0

∫ s1+δs1

s1

{σ + (σSL − σSV ) fA(w, w′, 0)− µfV (w)} ds dz, (2.8)

where the functions fA and fV are given by

fA(η, ηs, ηz) =
{

(1− κ(s)η)2(1 + η2
z ) + η2

s

}1/2
, fV (η) = η(1− 1

2
κ(s)η), (2.9)

with ηs = ∂η/∂s, ηz = ∂η/∂z. We then expand δE+µδV to first order by linearization
with respect to the small variations η and δsi to find

δE+ µδV =

∫ λ

0

∫ s1

s0

{
σ

(
∂fA

∂η

)
0

η + σ

(
∂fA

∂ηs

)
0

ηs + σ

(
∂fA

∂ηz

)
0

ηz + µ

(
∂fV

∂η

)
0

η

}
ds dz

+

1∑
i=0

(−1)i+1

∫ λ

0

(σ + (σSL − σSV ) fA(w, w′, 0)− µfV (w))s=siδsi(z)dz = 0,

where the partial derivatives of fA and fV are taken at (η, ηs, ηz) = (0, 0, 0):(
∂fA

∂η

)
0

= −κ(s),

(
∂fA

∂ηs

)
0

= 0,

(
∂fA

∂ηz

)
0

= 0,

(
∂fV

∂η

)
0

= 1.

The stationarity condition leads to the well-known Laplace equation statisfied by the
equilibrium surface S:

−σκ(s) + µ = 0, s0 6 s 6 s1, (2.10)
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and to the Young–Laplace condition at the contact lines

σ + (σSL − σSV ) fA(w(si), w
′(si), 0)− µfV (w(si)) = 0, i = 0, 1. (2.11)

Equation (2.10) shows that the mean curvature κ(s) is a constant, and as expected,
the equilibrium cross-sectional curve C is an arc of circle of radius r = ±1/κ. In
the derivations which follow, we treat κ as a constant parameter and replace the
Lagrange multiplier µ by σκ. We call a meniscus ‘concave’ if κ > 0, and conversely
‘convex’ if κ < 0 (as shown in figure 1). Equation (2.11) can be written as, using
w(si) = 0, i = 0, 1,

σSV − σSL
σ

= (1 + w′(si)2)−1/2 = n · nw ≡ cos γ, i = 0, 1, (2.12)

where γ, the so-called contact angle, is the angle measured between the two outward
unit normal vectors n and nw of the liquid interface and solid wall at the contact
lines. Hence it follows that

w′(si) = (−1)i+1 tan γ, i = 0, 1. (2.13)

With these conditions assumed to hold, the equilibrium surface S is stable if the
energy variation δE(η) remains positive for all second-order perturbations in the
neighbourhood of S, for all η such that δV (η) = 0. Hence we determine δE(η) +
µδV (η) within quadratic terms in the perturbations η and δsi (see Appendix A):

1

2σ
(δE+ µδV ) =

∫ λ

0

∫ s1

s0

{
η2
s + η2

z − κ2η2
}

ds dz

+

1∑
i=0

(−1)i
∫ λ

0

d

ds
{cos γ fA(w, w′, 0) + κfV (w)}s=siδs2i (z)dz, (2.14)

where we have used the identities µ = σκ and σSV − σSL = σ cos γ. Upon using
the contact line conditions w(si) = 0, w′(si) = (−1)i+1 tan γ and the relationship (2.6)
between δsi(z) and η(si, z), we find

1

2σ
(δE+ µδV ) =

∫ λ

0

∫ s1

s0

{
η2
s + η2

z − κ2η2
}

ds dz +

∫ λ

0

{
α0η

2(s0, z) + α1η
2(s1, z)

}
dz,

(2.15)
with

αi = − cot γ (κ sin2 γ + w′′(si) cos2 γ), i = 0, 1. (2.16)

The second derivative of w at the contact lines is of course related to the curvature
κw(si) at the contact lines of the cross-section of the solid interface with a plane z =
constant. It can readily be shown that

κw(si) = cos3 γ
(
w′′(si) + κ+ 2κ tan2 γ

)
which leads to

αi =
κ cos γ − κw(si)

sin γ
, i = 0, 1, (2.17)

where we choose the sign of κw so that κw > 0 when the curvature vector of the solid
surface is directed along the outward normal nw . Hence the stability of equilibrium
surface S can be guaranteed if the minimum value reached by the functional

Q(η) =
1

2

∫ λ

0

∫ s1

s0

{
η2
s + η2

z − κ2η2
}

ds dz +
1

2

∫ λ

0

{
α0η

2(s0, z) + α1η
2(s1, z)

}
dz (2.18)
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over the set of smooth functions η(s, z) satisfying the condition∫ λ

0

∫ s1

s0

η(s, z)ds dz = 0 (2.19)

is a positive number.

3. Stability criterion
Variational problems such as Q(η) = min constrained by equation (2.19) are known

to be related to the eigenvalue problem associated with a linear operator (see Courant
& Hilbert 1953, vol I, Chapter VI). Indeed, if in addition to the volume constraint
(2.19) we require that the set of admissible functions η also satisfy the normalization
constraint ∫ λ

0

∫ s1

s0

η2(s, z)ds dz = 1 (3.1)

then this variational problem leads to the Euler–Lagrange equation (see Appendix C)

ηss + ηzz + κ2η + µ0 + µη = 0, (3.2)

where µ0 and µ are the Lagrange multipliers associated with the constraints (2.19)
and (3.1), with the following boundary conditions:

ηs(s1, z) + α1η(s1, z) = −ηs(s0, z) + α0η(s0, z) = 0, (3.3)

ηz = 0, z = 0, λ. (3.4)

Furthermore, we show in Appendix C that the minimum value reached by Q(η) is
the smallest eigenvalue min(µ) solution of equation (3.2) with boundary conditions
(3.3)–(3.4). Note that the normalization condition (3.1) can be imposed without loss
of generality since it does not affect in any way the requirement that the quadratic
functional Q remain positive. The stability criterion of S now becomes min(µ) > 0.

The solution of (3.2)–(3.4) can be found by expanding the unknown eigenfunction
in the expansion

η(s, z) = η0(s) +

∞∑
n=1

ηn(s) cos
(nπz
λ

)
. (3.5)

Then the modes η0 are solutions of

η′′0 + κ2η0 + µ0 + µη0 = 0, s0 6 s 6 s1,

∫ s1

s0

η0(s)ds = 0, (3.6)

η′0(s1) + α1η0(s1) = −η′0(s0) + α0η0(s0) = 0, (3.7)

and correspond to perturbations in the (Oxy)-plane. The modes ηn, n > 1, automati-
cally satisfy the volume constraint (2.19) and are the non-trivial solutions of

η′′n +

(
µ+ κ2 −

(nπ
λ

)2
)
ηn = 0, s0 6 s 6 s1, (3.8)

η′n(s1) + α1ηn(s1) = −η′n(s0) + α0ηn(s0) = 0, (3.9)

and correspond to transverse periodic perturbations of wavelength 2λ.
We note at this point that the modes of perturbations we have found are strictly

valid for a liquid ridge of finite length λ, that is, for liquid domains bounded by flat
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Figure 2. (a) Symmetrical liquid ridge with centreplane x = 0. (b) Transverse varicose-like mode
of instability of wavelength 2λ of a meniscus with free contact lines.

surfaces at z = 0 and z = λ with contact angle π/2 (to ensure a cylindrical interface).
The question is then to find, for given substrate and cross-sectional liquid geometries,
the critical length λc above which a liquid cylindrical ridge becomes unstable.

Since this analysis is valid for arbitrarily large ridge length, we adopt the viewpoint
that, for an infinitely long ridge, the relevant modes of perturbations are still of
the type η0(s) (planar modes) and ηn(s) cos (πz/λ), i.e. transverse periodic modes of
wavelength 2λ continuously ranging from 0 to ∞. The problem is then to determine
the smallest wavelength 2λc above which all transverse periodic perturbations are
destabilizing. Whether other types of perturbations are relevant is a mathematical
question which is beyond the scope of this article. Hence, for infinite configurations,
our analysis is valid strictly with respect to the aforementioned class of perturbations.
In the following derivations and in the particular examples treated in § 4, the parameter
λc = π/kc is to be interpreted either as the critical length of a finite ridge or as the
half-wavelength of the critical mode of instability for an infinitely-long ridge.

We now determine the eigenmodes for symmetric configurations, that is, for which
the contact line conditions at s = s0 and s = s1 are identical: α0 = α1 = α. In
particular, this would be satisfied if the solid interface admits a plane of symmetry
x = 0 as shown in figure 2. Then for liquid menisci with the same symmetry, we may
replace the boundary conditions satisfied by the modes ηn by conditions at s = 0 (on
the plane of symmetry) and at s = s0 (on the wall)

η′n(0) = 0, η′n(s0) + αηn(s0) = 0 (n > 0), (3.10)

where α = (κ cos γ − κw)/ sin γ, and r = ±1/κ, θ0 and s0 = rθ0 now denote the
radius, the half-angle, and the half-arclength, respectively, of the equilibrium meniscus
(see figure 2). Then we find the following solutions, within an arbitrary non-zero
multiplicative constant:

η0(s) = cos (s
√
κ2 + µ)− sin(s0

√
κ2 + µ)

s0
√
κ2 + µ

, (3.11)

where the constants µ 6= −1/r2 are the roots of the equation

(ξ + rθ0α/ξ) tan ξ = rθ0α, ξ = θ0

√
1 + r2µ (3.12)

(µ = −1/r2 must be discarded as a possible eigenvalue unless α = −3/s0). If the
smallest root of this equation is positive, then the equilibrium surface S remains
stable to planar modes (3.11).
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For n > 1, the transverse modes take the expression

ηn(s) = cos

(
s

√
κ2 + µn −

(nπ
λ

)2

)
(3.13)

where the eigenvalues µn satisfy√
κ2 + µn −

(nπ
λ

)2

tan

(
s0

√
κ2 + µn −

(nπ
λ

)2

)
= α. (3.14)

First, we note that the smallest eigenvalue µn is obtained for n = 1. Second, there
exists a critical value of the half-wavelength λ for which min(µ1) is zero. This value
corresponds to the critical value kc of the wavenumber k = π/λ for neutral stability of
the liquid ridge. All wavenumbers 0 < k 6 kc below kc lead to sinuous (often coined
‘varicose’) modes of instability of the liquid ridge. If kc exists, it must be a solution
of the equation √

1− (rkc)2 tan(θ0

√
1− (rkc)2) = rα (3.15)

for 0 < rkc < 1, or √−1 + (rkc)2 tanh(θ0

√−1 + (rkc)2) = −rα (3.16)

for rkc > 1. It is readily seen that equation (3.16) always admits a solution for α 6 0.
However, for α > 0, equation (3.15) will not admit a root satisfying 0 < rkc < 1 if the
parameters α, θ0 and γ satisfy the condition rα cos θ0 − sin θ0 > 0:

(κ cos γ − κw) cos θ0 >
1

r
sin θ0. (3.17)

When the equality rα cos θ0 = sin θ0 is satisfied, the critical wavenumber kc is zero, that
is, the wavelength of transverse instabilities becomes infinite. We show in Appendix
D that the stability condition (3.17) is equivalent to(

dp

dA

)
γ

> 0, (3.18)

where p = −σκ denotes the constant pressure within the cylindrical liquid meniscus,
and where A is its cross-sectional area in a plane z = constant. Here the pressure
is viewed as a function of the liquid volume when the wall geometry and the
contact angle γ remain fixed. This condition may be interpreted as follows: whenever
dp/dA > 0, infinitesimal sinuous perturbations of very large wavelength lead to a
pressure increase in the thicker sections, and hence will induce flow toward the thinner
sections. The liquid ridge is then stable to infinite-wavelength transverse perturbations
and hence to all perturbations.

The existence of a critical wavelength of instability depends on the specific depen-
dence of the half-angle θ0 and of the parameter α upon the geometry of the solid
interface. We consider below a number of substrate configurations for which the
equations (3.15) and (3.16) are solved numerically. In each case we check whether
(3.17) or (3.18) can be realized or not.
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Figure 3. Cylindrical liquid ridge pinned to the two sharp edges of a groove. The dihedral angle
β formed between the solid and liquid interfaces must satisfy γ < β < π − µ + γ to guarantee
the existence of such a configuration. (a) θ0 6 π/2, the liquid ridge is stable to all infinitesimal
perturbations. (b) θ0 > π/2, the liquid ridge is unstable to all transverse sinuous perturbations of

wavenumber rk 6 rkc = (1− (π/2θ0)2)1/2.

4. Applications
4.1. Fixed contact lines

Here we consider the case treated by Brown & Scriven (1980) of the stability of a
liquid ridge whose contact lines are pinned at two symmetrically located locations on
the substrate. This would occur if the liquid meniscus located within a slot (or groove)
is pinned to the sharp, parallel edges of the slot. See figure 3. A liquid meniscus with
pinned contact lines is physically realizable if it is energetically favoured relative
to any neighbouring configurations with free contact lines. This requirement places
bounds on the dihedral angle, denoted as β on figure 3(a), formed between the solid
and liquid interfaces:

γ < β < π− µ+ γ, (4.1)

where γ is the contact angle that would be reached on a smooth location of the
substrate, and where µ < π is the internal dihedral angle formed between the solid
interfaces at the sharp edge. For β < γ, the meniscus must recede into the interior of
the groove, while for β > π− µ+ γ, the meniscus must run over the sharp edge of the
groove.

Stability analysis can be obtained from our previous results by taking the formal
limit α→∞. We first see that, with respect to planar modes, equation (3.12) becomes,
in the limit α→ ∞, tan ξ = ξ whose smallest non-zero positive root is ξ0 ≈ 4.49 and
hence leads to the smallest eigenvalue µ given by r2µ = (ξ0/θ0)

2−1. Since the angle θ0

is always less than π, the smallest eigenvalue µ is always positive. Therefore, menisci
with fixed contact lines are always stable to planar volume-conserving perturbations.
Second, with respect to transverse perturbations, equation (3.15) becomes in the limit
α→∞

rkc =

√
1−

(
π

2θ0

)2

(4.2)

as long as θ0 > π/2. Hence menisci satisfying θ0 < π/2 are stable to all transverse
perturbations. Menisci satisfying θ0 > π/2 are unstable to all transverse perturbations
of wavelength 2λ > 2λc = 2π/kc. Note that as θ0 → π/2, kc → 0. Hence we recover
the results of Brown & Scriven (1980). Figure 4 shows the interfacial pressure p/σ
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Figure 4. Cylindrical liquid ridge pinned to the two sharp edges of a semi-circular groove: interfacial
pressure p/σ versus liquid ridge cross-sectional area A; the unstable menisci of half-angle θ0 > π/2
correspond to decreasing interfacial pressure, i.e. dp/dA < 0.
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Figure 5. Critical wavenumber Lkc for a flat surface versus the contact angle γ: (i) in the limit
γ → 0, Lkc ≈ 2.40, (ii) at γ = π/2, Lkc = 2, (iii) in the limit γ → π, L ∼ 2r(π − γ) leading to

rkc = constant =
√

3/4.

versus the cross-sectional liquid area A > 0 for the family of menisci pinned to the
sharp edges of a semi-circular groove. It is seen that instability develops due to three-
dimensional transverse perturbations when the two-dimensional equilibrium profile
reaches a pressure maximum: stable menisci correspond to dρ/dA > 0, while unstable
menisci correspond to dp/dA < 0. The same criterion was found by Majumbar &
Michael (1976) for pendant cylindrical menisci hanging from the edges of a slot.

4.2. Planar substrate

Here we generalize a result obtained by Sekimoto et al. (1987) in the case of a flat
planar solid substrate. See figure 5. We readily obtain the angle θ0 and the parameter



304 R. V. Roy and L. W. Schwartz

ç

(a) (b)

b

r
h0

(c)

ç

b

r
h0

ç

b

r

h0h0h0

Figure 6. Liquid ridge wetting a wedge/edge: (a) concave meniscus (negative pressure) in a wedge,
(b) convex meniscus (positive pressure) in a wedge, (c) convex meniscus wetting an edge of half-angle
π/2 < β < π.

α for this geometry:

θ0 = γ, α = −1

r
cot γ. (4.3)

First, we check that condition (3.17) can never be satisfied for 0 6 γ 6 π. It is also
readily seen that, for given contact angle, the pressure within the cylindrical meniscus
is a decreasing function of the liquid cross-sectional area, dp/dA < 0. We obtain three
limiting cases of interest: (i) in the limit γ → 0, we arrive at Sekimoto et al.’s result
by scaling kc with the distance L = 2r sin γ measured between the two contact lines,
since in this range the radius of curvature r is of order 1/γ. We then find that kc
satisfies (Lkc/2) tanh(Lkc/2) = 1 yielding Lkc ≈ 2.40 independent of the value of the
contact angle; (ii) for γ = π/2, the critical wavenumber should be identical to that of
a liquid cylinder, that is, rkc = 1 which is indeed the solution of (3.16); (iii) finally,
in the limit γ → π, we obtain a liquid cylinder pinned at one of its generatrices on
the flat solid surface, and for which it is known that rkc →

√
3/4 which is indeed

the solution of (3.15). Furthermore, we can check that, as expected, equation (3.12)
has no negative roots µ 6= −1/r2, and hence the ridge is stable to planar modes. We
solve the algebraic equations (3.15) and (3.16) by scaling kc with the inverse of width
L, and the results are shown in figure 5 for the entire range 0 6 γ 6 π. We believe
that the same curve kc(γ) is found in the dynamic stability analysis done by Davis
(1980) of static rivulets in contact with a flat substrate in the case of moving contact
lines. It is not surprising that the critical wavenumber kc should be independent of
the dynamic modelization of contact lines. A dynamic modelization would however
predict the growth rates of instability and the most unstable wavelength.

We note that the case of a liquid ridge of finite length λ at contact angle γ = π/2 is
identical, by symmetry, to the case of a cylindrical liquid bridge between two parallel
planes separated by a distance λ: we find that the critical length is λc = πr which,
as expected, is half of Rayleigh’s wavelength of instability. For more details on the
stability analysis of cylindrical bridges between flat surfaces, see Vogel (1987).

4.3. Wedge and edge

A natural extension of plane substrate is that of the wedge configuration shown in
figure 6(a, b). The stability of menisci in wedge-like containers has been previously
examined by Concus & Finn (1969, 1974) and more recently by Langbein (1990).
We denote by β, 0 < β 6 π/2, the half-angle of the wedge. We first note that non-
symmetric menisci are not physically realizable if the contact angles of both walls of
the wedge are identical. Two possible configurations of symmetric liquid ridges are
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Figure 7. Non-dimensional critical wavenumber Lkc for transverse instability of a meniscus of
width L inside a wedge of angle 2β for β = π/6, π/4, π/3. For given fixed value of angle β, the
menisci are stable to all modes of perturbation for contact angles 0 < γ 6 π/2 − β corresponding
to concave (negative pressure) menisci.

possible. For a concave interface, that is, for a negative-pressure meniscus as shown
in figure 6(a), we find

θ0 =
π

2
− β − γ, α =

1

r
cot γ, (4.4)

as long as the contact angle satisfies 0 6 γ 6 π/2 − β. Then it can be shown that
condition (3.17) is always satisfied, and hence equations (3.15) and (3.16) do not admit
any real roots. In the limit γ → π/2− β, the liquid surface becomes flat. Then, in this
limit, θ0 → 0 and r = O(1/θ0) leading to Lkc → 0, if L denotes the distance between
the two contact lines. Hence, for a contact angle 0 6 γ 6 π/2 − β, the liquid ridge
is stable to all modes of perturbations (including planar modes, since (3.12) has no
negative roots as expected).

For a convex interface, that is, for a positive-pressure meniscus as shown in figure
6(b), we find

θ0 = β + γ − π

2
, α = −1

r
cot γ, (4.5)

for a contact angle π/2 − β 6 γ 6 π. Then, condition (3.17) is never satisfied, and
equations (3.15) and (3.16) always admit a root (Lkc), with Lkc → 0 in the limit
γ → π/2− β. Figure 7 shows (Lkc) versus γ obtained by numerical solution of (3.15)
and (3.16) for various wedge angles. We note that menisci in wedges are always stable
in the limit of zero contact angle for all wedge angles 0 < β < π/2.

For wedges of half-angle π/2 < β < π, or more appropriately termed ‘edges’, as
shown in figure 6(c), the liquid interface is always convex, the parameters θ0 and α
are still given by (4.5), but the contact angle satisfies the bounds

β − π

2
6 γ 6

3π

2
− β. (4.6)

In the limit γ → 3π/2 − β, the angle θ0 tends to π, and the width L tends to 0: the
cylindrical ridge is pinned at the edge vertex. In the limit γ → β − π/2, the midpoint
of the liquid interface comes into contact with the edge vertex.
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Figure 8. Non-dimensional critical wavenumber Lkc for transverse instability of a meniscus inside
a wedge of varying angle 0 6 β 6 π and contact angle γ = π/4, π/2, 3π/4.

In figure 8, we show the variation of Lkc as the wedge is ‘opened’ from the value
β = 0 to β = π. In general, critical wavenumbers exist in the range

βmin = max(0, π/2− γ) 6 β 6 βmax = min(π, 3π/2− γ).
For all angles 0 < β 6 βmin, the liquid ridge is stable for all perturbations. For
βmax 6 β < π, the liquid ridge cannot exist as a whole but is divided into two
symmetrical parts pinned at the edge vertex.

4.4. Right-circular cylindrical solid surface

We consider here the stability of liquid ridges partially wetting the interior surface
of a cylinder of radius R. We fix the contact angle to some value γ between 0 and π.
We build a family of liquid interfaces by increasing the liquid volume from 0 at some
arbitrary point P of the solid surface until the entire interior of the cylinder is filled.
We denote by A the ratio between the liquid area to the area of the vessel interior.
As the fill ratio grows from A = 0, the menisci have positive decreasing pressure until
the fill ratio A∗ = (2γ − sin 2γ)/2π is reached. At A = A∗, the interface is straight and
the pressure is zero. For increasing A from the value A = A∗ to A = 1, the menisci
change convexity and have negative decreasing pressure. See figure 9. For each case,
one can easily determine the parameters r, α, and θ0 as a function of the fill ratio A
and the contact angle γ. We find, for 0 < A < A∗, denoting ρ = r/R,

A =
1

2π
(1 + ρ2)(2θ0 − sin 2θ0), cot θ0 =

ρ+ cos γ

sin γ
, rα = −1

ρ
cot θ0, (4.7)

and for A∗ < A < 1

A =
1

2π
(1− ρ2)(2θ0 − sin 2θ0), cot θ0 =

ρ− cos γ

sin γ
, rα = −1

ρ
cot θ0. (4.8)

In both cases, condition (3.17) is never satisfied, and the equations (3.15) and (3.16)
always admit a root (Lkc), where we denote as before L = 2r sin θ0 the distance
between the contact lines. We obtain on figure 10 the various curves of (Lkc)A,γ as
functions of the fill ratio 0 6 A 6 1 for fixed values of the contact angle in the
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Figure 9. Liquid ridge wetting the interior of right-circular cylinder: as the fill ratio is increased
from A = 0 at point P to A = 1 at point P ′, the menisci, initially convex (with positive pressure),
become concave (with negative pressure).
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Figure 10. Critical wavenumber Lkc versus fill ratio A for transverse instability of menisci partially
wetting a right-circular cylinder for contact angle γ = π/20, π/12, π/8, π/4, 3π/8, π/2. Note that
for small contact angles and small fill ratio, the limit Lkc ≈ 2.4 is approached of a liquid ridge on
a flat substrate at small contact angle.

interval 0 < γ 6 π/2. Note that at A → 0 or A → 1, the width L tends to zero,
and since Lkc tends to a finite limit, the critical wavelength must tend to zero. As
both A and γ tend to zero, we should expect to obtain the limit corresponding to
a meniscus wetting a flat solid surface at small contact angle, that is, Lkc → 2.40.
The corresponding curves for contact angle π/2 < γ < π can be obtained from those
shown in figure 10 by examination of figure 11: to a meniscus of contact angle γ and
fill ratio A corresponds a ‘complementary’ one with contact angle π− γ and fill ratio
1 − A. Since both menisci admit the same values of the parameters r, θ0, L and α,
they must admit the same critical wavelength of instability according to equations
(4.7) and (4.8):

(Lkc)A,γ = (Lkc)1−A,π−γ. (4.9)

Hence the curves of figure 10 of contact angle 0 < γ < π/2 will yield the corresponding
ones for contact angle π/2 < γ < π by symmetry about the line A = 1/2. Zero-contact-
angle solutions are of course not possible, unless both contact lines coincide and lead
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Figure 11. Two complementary menisci partially wetting a right-circular cylinder: if the meniscus to
the right corresponds to fill ratio A and contact angle γ, then the meniscus to the left corresponds to
fill ratio 1−A and contact angle π− γ; both menisci have the same critical wavelength of tranverse
instability.

to right-circular cylindrical liquid interfaces with one generatrix pinned to the interior
of the solid surface.

4.5. Cylindrical solid surface of elliptical cross-section

We can generalize the cylinder of circular cross-section to one with elliptical cross-
section:

x = a cosφ, y = b sinφ, 0 6 φ < 2π, (4.10)

where we choose 0 < c = b/a < 1. We restrict our analysis to the family of menisci
which are symmetric with respect to the plane y = 0, so that the contact line positions
on the ellipse correspond to φ = ±φ0.†We denote again by r, θ0, (x0, 0) the radius, the
half-angle, and the coordinates of the centre of the arc of circle which represents the
unperturbed meniscus. See figure 12(a). As in the previous case, a family of symmetric
menisci of increasing volume can be generated by increasing the fill coefficient A from
the value 0 at apex P (a, 0) to the value 1 at apex P ′(−a, 0) for some given fixed value
of the contact angle 0 6 γ 6 π. We find again that, at some fill ratio A = A∗, a
straight liquid interface separates initially convex menisci from concave menisci. The
contact line position of the straight meniscus on the ellipse is given as a function of
γ by

cosφ∗ =
cos γ√

cos2 γ + c2 sin2 γ
, (4.11)

with corresponding fill ratio given by

A∗ =
1

π
(φ∗ − 1

2
sin 2φ∗). (4.12)

Figure 12(b) shows a family of menisci generated from the apex P to apex P ′ for a
contact angle γ = 3π/8 and c = b/a = 1/2. For fill ratio 0 < A < A∗ and contact
angle γ, the meniscus position is given by parameters ρ = r/a, ξ = x0/a, φ0, θ0,

† There exists another less energetically favoured family of menisci which are symmetric with
respect to the plane x = 0, with contact lines positions at φ = φ0 and at φ = π − φ0. We do
not examine it. We note that a liquid layer lining the interior surface of a pipe with elliptical
cross-section would have the tendency to flow towards the sharper ‘corners’ P (a, 0) or P ′(−a, 0) due
to gradients of substrate curvature.
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Figure 12. Menisci wetting the interior of a cylindrical surface with elliptical cross-section
(x = a cosφ, y = b sinφ); (a) each meniscus is symmetric w.r.t plane y = 0 and is charac-
terized by a fill ratio A, radius r, half-angle θ0 and contact angle position φ0 on the ellipse. The

straight interface given by cosφ∗ = cos γ/
√

cos2 γ + c2 sin2 γ separates convex from concave menisci.
(b) A family of menisci of increasing volume generated from apex P (fill ratio A = 0) to apex P ′ (fill
ratio A = 1) for b/a = 1/2 and contact angle γ = 3π/8. In (a) and (b) the liquid phase is assumed
to the right of the vessel.

solutions of

ρ2 = (ξ − cosφ0)
2 + c2 sin2 φ0, tan θ0 =

c sinφ0

ξ − cosφ0

,

ρ = c
−1 + ξ cosφ0

cos γ
√

sin2 φ0 + c2 cos2 φ0

, (4.13)

πA =
ρ2

c
(2θ0 − 1

2
sin 2θ0) + (φ0 − 1

2
sin 2φ0). (4.14)

The solutions of (3.15) and (3.16) can then be determined with the following expression
for the parameter rα:

rα = −cos γ + ρκE

sin γ
, κE =

c

(sin2 φ0 + c2 cos2 φ0)3/2
, (4.15)

where κE is the substrate curvature. Similar equations can be written for A∗ < A < 1.
The key difference between this case and the right-circular cylinder is that the equation
rα cos θ0 = sin θ0 may be satisfied only for some values of the fill ratio A for given
contact angle γ. More specifically, for contact angles 0 6 γ 6 γ̄, there exists a range
of fill ratio Amin(γ) 6 A 6 Amax(γ) for which condition (3.17) is satisfied; in this range,
the liquid ridge is stable to transverse perturbations of all wavelengths. At A = Amax
or A = Amin, the wavelength is infinite. Note that at zero contact angle, the critical
wavelength is given by

rkc =

√
1−

(
π

2θ0

)2

, cos θ0 =
c cosφ0√

sin2 φ0 + c2 cos2 φ0

,
π

2
6 φ0 6 π. (4.16)

Hence, all menisci which wet at most half of the ellipse perimeter at zero contact
angle are stable to all perturbations: Amin = 0 and Amax = (1− c)/2 (since in the limit
φ → π/2, ρ → c, θ → π/2). Also note that in the limit φ → π (i.e. when the contact
lines approach P ′), we have ρ→ c2, θ → π and A→ 1− c3 < 1 which corresponds to
the circle osculating the ellipse at apex P ′.

We show in figure 13 the numerical values reached by (Lkc)γ,A in the range
0 6 A 6 1, for a few contact angles in the interval 0 6 γ 6 π/2, and for the
ratio c = b/a = 0.5: a range of stable menisci exists in the contact angle interval
0 6 γ 6 γ̄ = 27◦ 3′. Figure 14 delineates the regions of stability in the (γ, A) parameter
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Figure 13. Critical wavelength of transverse instabilities for menisci partially wetting the interior of
an elliptic cylinder. Each curve represents Lkc versus the fill ratio 0 6 A 6 1 for a specific contact
angle 0 6 γ 6 π/2 and for c = b/a = 1/2. Similar curves can be graphed for π/2 6 γ 6 π by
noting that (Lkc)A,γ = (Lkc)1−A,π−γ . Note that for 0 6 γ 6 27◦ 3′, there is a range of menisci of fill
ratio Amin < A < Amax where kc does not exist, i.e. for which the corresponding menisci are stable
to sinuous transverse perturbations of all wavelengths. At zero contact angle, we have Amin = 0 and
Amax = 0.25 which corresponds to menisci wetting at most half of the surface of the vessel.
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Figure 14. Fill ratio Amin and Amax versus contact angle γ for the ellipse geometry
c = b/a = 0.9, 0.5, 0.1. In the range Amin 6 A 6 Amax, the menisci are stable to all transverse
perturbations. As c→ 1, the range of stable menisci vanishes.

plane for the values c = 0.1, 0.5, 0.9. The region of stability decreases with the ellipse
excentricity. Finally, figure 15 shows the variation of the meniscus pressure versus A
for contact angle γ = 0.3 and c = b/a = 0.5, which clearly demonstrates that the
range of stable menisci Amin 6 A 6 Amax corresponds to dp/dA > 0.
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Figure 15. Pressure versus fill ratio for menisci partially wetting substrate of figure 12 for contact
angle γ = 0.3 and b/a = 0.5: for fill ratio Amin < A < Amax, the menisci satisfy dp/dA > 0 and are
stable to transverse perturbations. The inset shows the two critical menisci which separate stable
and unstable solutions. These two interfaces are characterized by dp/dA = 0.

5. Concluding remarks
Our stability analysis of liquid ridges of finite length λ led to modes of instability of

the type ηn(s) cos(nπz/λ), n > 0. For ridges of infinite length, we examined the stability
with respect to the class of both planar and sinuous transverse modes of all wave-
lengths 2λ ranging from 0 to ∞ and we looked for the smallest possible wavelength
(the critical wavelength) below which such perturbations are not destabilizing. When
a certain inequality given by equation (3.17) is satisfied between the curvatures of the
liquid and solid interfaces and the liquid–solid contact angle, no critical wavelength
of instability can be found, and the resulting liquid ridge is stable with respect to
this class of perturbations. Moreover, we found that this criterion is equivalent to
the condition dp/dA > 0, which offers a practical way to assess the stability of a
family of liquid ridges to transverse perturbations which conserve liquid volume. We
believe that the same criterion would apply for other cylindrical configurations as for
example in the case of liquid bridges between curved walls, or in the case of pendant
liquid ridges. We note that an infinite cylindrical jet does not satisfy this condition,
and hence is unstable, as predicted by Rayleigh. The question of whether other modes
of perturbations are relevant to the stability analysis of infinite liquid ridges has not
been addressed.

We have analysed the stability of liquid ridges to infinitesimal perturbations which
preserve the liquid volume. Another class of perturbations are those which preserve
the pressure difference across the interface, as would occur physically if the liquid ridge
were connected to a constant-pressure reservoir. Such perturbations were considered
by Majumbar & Michael (1977) and by Brown & Scriven (1980) for liquid menisci
pinned to a slot.

Small deviations from the idealized case of zero Bond number are not expected to
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qualitatively change the results presented here, as was shown in the studies of Brown
& Scriven (at zero Bond number) and Majumbar & Michael (non-zero Bond number)
for the stability of liquid menisci pinned to a slot. However, significant differences
must be expected at large Bond numbers for pendant cylindrical menisci where the
effect of gravitational forces leads to a maximum supportable volume of liquid.

Here we have determined the critical wavelength λc for instability; perturbation
modes of greater wavelength are unstable. In a natural system excited by noise, an
important quantity is the observed average wavelength at which a ridge of given
cross-section on a given substrate will actually break up. Determination of this
wavelength requires consideration of the fluid dynamics, including a model for flow
and viscous dissipation at moving contact lines. It is necessary to relieve the so-
called moving contact line singularity, i.e. the impossibility of contact-line motion
for liquids with finite surface tension on a no-slip substrate (Huh & Scriven 1971).
Significant progress can be made for the slow motion of thin liquid layers, when the
lubrication approximation can be invoked. It is then possible to relieve the singularity
through the use of a very thin ‘precursor’ layer applied on the nominally dry regions
of the substrate. A finite equilibrium contact angle can also be incorporated in an
efficient quasi-three-dimensional numerical model using a ‘disjoining pressure’ term
in the resulting evolution equation (Schwartz 1998; Schwartz & Eley 1998). It should
be noted, however, that this technique, like any other that treats moving contact
lines, including various slip models, requires some degree of experimental validation.
In the above-cited works, the precursor layer thickness is an adjustable parameter.
Preliminary results show that the break-up of a slightly perturbed cylindrical ridge
on a flat substrate can be modelled successfully for the entire period of motion, until
the liquid finds a stable final configuration as a pattern of isolated drops. A report
will be available shortly.

This work is supported by the NASA Microgravity Program, the ICI Strategic
Research Fund, and the State of Delaware.

Appendix A. Derivation of the energy first and second variations
We define δE = E(η) − E(0) as the difference of interfacial energy between the

perturbed and unperturbed configurations. With the parametrization (2.3), the surface
admits the following metrics:

E ≡ x2
s = (1− κη)2 + η2

s , F ≡ xs · xz = ηsηz, G ≡ x2
z = 1 + η2

z , (A 1)

where x(s, z) represents a position vector from the origin O to a point on the perturbed
liquid interface. Hence its area can be expressed as (over a length λ along the z-axis)

ALV (η) =

∫ λ

0

∫ s1+δs1

s0+δs0

(EG− F2)1/2ds dz =

∫ λ

0

∫ s1+δs1

s0+δs0

((1− κη)2(1 + η2
z ) + η2

s )
1/2ds dz

≡
∫ λ

0

∫ s1+δs1

s0+δs0

fA(η, ηs, ηz)ds dz. (A 2)

The liquid region confined between the solid and the liquid interfaces can be
parametrized by (s, ξ, z) according to the (orthogonal) mapping

x = X(s)− ξY ′(s), y = Y (s) + ξX ′(s), z = z, (A 3)
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with corresponding metrics

ms = 1− κξ, mξ = 1, mz = 1. (A 4)

Hence the volume of this region is

V (η) =

∫ λ

0

∫ s1+δs1

s0+δs0

∫ η(s)

w(s)

(1− κξ)dξds dz =

∫ λ

0

∫ s1+δs1

s0+δs0

(fV (η)− fV (w))ds dz, (A 5)

with fV (η) = η(1− 1
2
κη). Finally, the area of wetted wall is given by

ASL(η) =

∫ λ

0

∫ s1+δs1

s0+δs0

fA(w, w′, 0)ds dz. (A 6)

Then expression (2.8) is obtained by determining the variation of σALV + σSLASL +
σSVASV + µV between the unperturbed and perturbed configurations and by using
δASV = −δASL. By expanding fA and fV in a Taylor series up to terms of first order
in η, ηs and ηz , we find∫ λ

0

∫ s1+δs1

s0+δs0

{σfA(η, ηs, ηz)− σ + µfV (η)} ds dz ≈
∫ λ

0

∫ s1

s0

(µ− σκ)ηds dz, (A 7)

∫ λ

0

∫ si+δsi

si

{σ + (σSL − σSV ) fA(w, w′, 0)− µfV (w)} ds/dz

≈
∫ λ

0

(
σ + (σSL − σSV ) fA(w, w′, 0)− µfV (w)

)
s=si

δsi(z)dz. (A 8)

Since the perturbations η and δsi are arbitrary, the equilibrium conditions (2.10) and
(2.11) follow by imposing δE+ µδV = 0.

Assuming that conditions (2.10) and (2.11) are satisfied by the equilibrium meniscus,
the second-order variation of E+µV is obtained by expansion to second-order terms
in the perturbation η and δsi:∫ λ

0

∫ s1+δs1

s0+δs0

{σfA(η, ηs, ηz)− σ + µfV (η)} ds dz ≈ 1

2

∫ λ

0

∫ s1

s0

(
ση2

s + ση2
z − µκη2

)
ds dz,

(A 9)∫ λ

0

∫ si+δsi

si

{σ − σ cos γ fA(w, w′, 0)− µfV (w)} ds/dz

≈ 1

2

∫ λ

0

d

ds
(σ − σ cos γ fA(w, w′, 0)− µfV (w))s=siδs

2
i (z)dz. (A 10)

By using the contact line conditions for w and δsi, one readily obtains the quadratic
functional Q defined by (2.18).

Note that the representations (2.3) and (2.4) of the liquid and the solid surfaces
in the vicinity of the contact lines lead to certain modifications for contact angle
γ > π/2:

(i) The sign of ASL should be reversed for γ > π/2; indeed, in this case the
orientation of the solid surface in the vicinity of the contact lines according to (2.4)
is reversed; this would then change the sign of (1 + w′(si)2)−1/2 in (2.12).
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(ii) For γ = π/2, the relationship between η(si) and δsi needs to be appropriately
modified since in this case w′(si)→∞. Moreover, a flat substrate is represented by the
entire normal to the circular section at the contact line s = si. In this case, an arbitrary
disturbance is still represented by (2.3) for s0 6 s 6 s1 without the need to introduce
the variations δsi, or equations (2.5) and (2.6). The first and second variations would
have to be rederived in this particular case. We find of course the same functional Q
with α0 = α1 = 0.

Appendix B. Isoperimetric problems: one-parameter versus two-parameter
comparison functions

We address here the validity of our solution procedure for variational prob-
lems of the type min (I(y)) subject to integral constraint J(y) = constant. For
concreteness and simplicity, we choose the functionals I(y) =

∫ x1

x0
F(x, y, y′)dx, and

J(y) =
∫ x1

x0
G(x, y, y′)dx, with prescribed fixed boundary conditions at x = x0 and

x = x1. We have derived our results by determining the first and second variations of
I(y) + λJ(y) by expanding the function K(ε) = (I + λJ)(y + εη) about ε = 0, that is,
by choosing a one-parameter family of comparison functions Yε = y + εη (y being
the extremizing functions and ε� 1):

K(ε) = K(0) + εK1(y, η) + 1
2
ε2K2(y, η) + · · · , (B 1)

K1(y, η) =

∫ x1

x0

(
ηF∗y + η′F∗y′

)
dx, K2(y, η) =

∫ x1

x0

(
η2F∗yy + 2ηη′F∗yy′ + η′2F∗y′y′

)
dx,

(B 2)
with F∗ = F + λG. If y(x) is an extremizing solution, then dK/dε = 0 at ε = 0, or

K1(y, η) =

∫ x1

x0

(
F∗y − d

dx
F∗y′
)
ηdx = 0. (B 3)

With arbitrary η, we obtain the Euler–Lagrange equation satisfied by y(x):

∂F∗

∂y
− d

dx

(
∂F∗

∂y′

)
= 0, (B 4)

where the unknown Lagrange multiplier is determined by imposing the constraint
J(y) = constant. Then a sufficient condition for y to minimize I is δ2K ≡ 1

2
ε2K2

(y, η) > 0. Note that in § 2 we have absorbed the small parameter ε into η.

In order to appropriately guarantee the constraint J(y) = constant, it is more
appropriate for isoperimetric problems to consider (see Courant & Hilbert 1953,
Chapter IV, § 7)

K(ε1, ε2, λ) = (I + λJ)(y + ε1η1 + ε2η2), (B 5)

that is, to consider a two-parameter family of comparison functions Yε1ε2
= y+ε1η1 +

ε2η2. If y is an extremizing function, then ∂K/∂εi = 0 at ε1 = ε2 = 0 for arbitrary
choice of η1 and η1: ∫ x1

x0

(
ηiF

∗
y + η′iF

∗
y′
)

dx = 0, (B 6)
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which leads again to equation (B 4) for both i = 1 and i = 2. Then the criterion for y
to be a local minimum is found by imposing that the determinant of second partial
derivatives

det



∂2K

∂ε2
1

∂2K

∂ε1∂ε2

∂2K

∂ε1∂λ

∂2K

∂ε1∂ε2

∂2K

∂ε2
2

∂2K

∂ε2∂λ

∂2K

∂ε1∂λ

∂2K

∂ε2∂λ

∂2K

∂λ2


evaluated at (ε1 = 0, ε2 = 0, λ) be negative. We find

∂2K

∂ε2
1

=

∫ x1

x0

(
η2

1F
∗
yy + 2η1η

′
1F
∗
yy′ + η′21 F

∗
y′y′
)

dx,

∂2K

∂ε1∂ε2

=

∫ x1

x0

(
η1η2F

∗
yy + (η1η

′
2 + η′1η2)F

∗
yy′ + η′1η

′
2F
∗
y′y′
)

dx,

∂2K

∂ε2
2

=

∫ x1

x0

(
η2

2F
∗
yy + 2η2η

′
2F
∗
yy′ + η′22 F

∗
y′y′
)

dx,

∂2K

∂εi∂λ
=

∫ x1

x0

(
ηiGy + η′iGy′

)
dx =

∫ x1

x0

(
Gy − d

dx
Gy′

)
ηidx,

∂2K

∂λ2
= 0.

Clearly, η1 and η2 can be rescaled such that

∂2K

∂ε1∂λ
=

∂2K

∂ε2∂λ
.

Then we find the sufficient condition for local minimization is(
∂2K

∂ε1∂λ

)2 ∫ x1

x0

(
(η1 − η2)

2F∗yy + 2(η1 − η2)(η
′
1 − η′2)F∗yy′ + (η′1 − η′2)2F∗y′y′

)
dx > 0,

(B 7)
which is identical to our previous condition. Hence we can formally state the condition
for stationarity of I subject to J = constant and the condition for local minimization
by considering a one-parameter family of comparison functions y + εη. Despite the
fact that such a family cannot satisfy the precise constant value J∗ imposed on J(y),
the procedure still enforces the precise form of functional J .

Appendix C. Stability criterion
We seek to determine stationary values of Q subject to the constraints (2.19) and

(3.1). The first variation of functional H defined by

H(η) = Q(η)− µ0

∫ λ

0

∫ s1

s0

ηds dz − µ
∫ λ

0

∫ s1

s0

η2ds dz, (C 1)
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where µ0 and µ are Lagrange multipliers, is given by

δH =

∫ λ

0

∫ s1

s0

(ηsδηs + ηzδηz − (µ+ κ2)ηδη − µ0δη)ds dz

+

∫ λ

0

(α0η(s0)δη(s0) + α1η(s1)δη(s1))dz

= −
∫ λ

0

∫ s1

s0

(ηss + ηzz + (κ2 + µ)η + µ0)δηds dz +

∫ λ

0

(ηs(s1) + α1η(s1))δη(s1)dz

+

∫ λ

0

(−ηs(s0) + α0η(s0))δη(s0)dz +

∫ s1

s0

[ηzδη]z=λz=0dz. (C 2)

With δη arbitrary, we arrive at the Euler–Lagrange equation

ηss + ηzz + (κ2 + µ)η + µ0 = 0, s0 6 s 6 s1, 0 6 z 6 λ, (C 3)

with the boundary conditions

ηs(s1, z) + α1η(s1, z) = −ηs(s0, z) + α0η(s0, z) = 0 (C 4)

ηz = 0, z = 0, λ. (C 5)

Note that µ0 can be eliminated from (C 3) by imposing the constraint
∫
ηds dz = 0:

µ0 =
1

λ(s1 − s0)
∫ λ

0

(α1η(s1, z) + α0η(s0, z))dz. (C 6)

Furthermore, if (η∗, µ∗, µ∗0) is a solution of the eigenvalue problem (C 3)–(C 5) and
satisfies the constraints (2.19) and (3.1), then functional Q(η∗) takes the value

Q(η∗) = −
∫ λ

0

∫ s1

s0

(η∗ss + η∗zz + κ2η∗)η∗ds dz +

∫ λ

0

(η∗s (s1) + α1η
∗(s1))η∗(s1)dz

+

∫ λ

0

(−η∗s (s0) + α0η
∗(s0))η∗(s0)dz = µ∗. (C 7)

Hence we conclude that min (Q) = min (µ). Thus the stability of a static liquid ridge
can be guaranteed if the smallest eigenvalue min (µ) solution of (C 3)–(C 5) is positive.
For a rigorous proof of this result see Courant & Hilbert (1953), Vol. I, Chapter VI.

Appendix D. Equivalent stability criterion
We first determine the variation of the pressure p as the liquid cross-sectional area

A of the unperturbed meniscus is varied, for fixed wall geometry and fixed contact
angle. For definiteness, we examine the configuration of figure 16 of a symmetric
meniscus with negative–pressure:

p = −σ
r
. (D 1)

The origin O of the coordinate system is chosen such that the contact line is located at
(x, 0). When the area A is varied by dA, the contact line position becomes (x+dx, dy),
while the parameters r (meniscus radius), θ0 (meniscus half-angle), φ (wall angle) vary
by dr, dθ0, and dφ respectively. With the identities

φ = θ0 + γ, r =
x

sin θ0

, κw = cosφ
dφ

dx
, (D 2)
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y

x
O

r

h0
ç

φ

h0

Figure 16. Symmetric meniscus partially wetting a solid surface with contact angle γ; φ denotes
the angle made by the wall with the x-axis at the contact line. The curvature of the interface is such
that the pressure within the liquid is p = −σ/r.

we find
dr

dx
=

1

sin θ0

− x cos θ0

sin2 θ0

dθ0

dx
=

1

sin θ0

(
1− rκw cos θ0

cos(θ0 + γ)

)
. (D 3)

Furthermore, to leading order of infinitesimals, the variation in A is given by

dA = xdy + O(x2) (D 4)

leading to, with dy = tan(θ0 + γ)dx,

dA/dx = r sin θ0 tan(θ0 + γ). (D 5)

Finally, we obtain from equation (D 1)

dp

dA
=
σ

r3

sin γ

sin2 θ0 sin(θ0 + γ)

(
cos γ − rκw

sin γ
cos θ0 − sin θ0

)
. (D 6)

We then see that condition (3.17) for meniscus stability to transverse perturbations is
equivalent to

dp/dA > 0. (D 7)

The same condition applies for a positive-pressure meniscus. Condition (3.18) can be
interpreted as follows. First, we note that if the meniscus is stable to infinite-wavelength
transverse perturbations, then it will be stable to all shorter-wavelength perturbations.
Thus the stability can be inferred in the limit of perturbations of infinite wavelength.
For infinitesimal perturbations of very large wavelength λ, the cross-sections of the
perturbed meniscus free surface in the planes z = 0 and z = λ are nearly identical to
the cross-section of the unperturbed equilibrium meniscus, that is, are nearly circles.
If at z = 0 both pressure and cross-sectional area A are larger than at z = λ, then the
liquid will flow from the thicker section z = 0 to the thinner section z = λ, and stability
of the liquid ridge is guaranteed. Conversely, if the pressure is smaller in the thicker
sections, then the perturbation will grow and the liquid ridge may break into droplets.

More specifically, assume that the perturbed meniscus region located between the
planes z = 0 and z = λ is partitioned into two cylindrical sections of areas A + dA1
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and A + dA2 respectively. Let c be the fraction of the length along the z-axis of the
partition of area A+ dA1. Conservation of volume implies

cdA1 + (1− c)dA2 = 0. (D 8)

Then the pressure difference between the two stations z = 0 and z = λ is given by

dp1 − dp2 =
σ

r2
(dr1 − dr2) =

σ

r3

sin γ

sin2 θ0 sin(θ0 + γ)

(
cos γ − rκw

sin γ
cos θ0 − sin θ0

)
dA1

1− c
(D 9)

using (D 6). Since 0 < c < 1, the sign of dp1 − dp2 is that of dA1 if the condition
rα cos θ0 > sin θ0 is satisfied by the cylindrical ridge.
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